3.5.36 \(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx\) [436]

Optimal. Leaf size=157 \[ \frac {19 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \]

[Out]

-1/4*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(5/2)-9/16*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)
)^(3/2)+19/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)
*sec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4349, 3902, 4097, 3893, 212} \begin {gather*} \frac {19 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

(19*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c + d*x]]*S
qrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - Sin[c + d*x]/(4*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2)) -
 (9*Sin[c + d*x])/(16*a*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4097

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])
^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0
] && LeQ[m, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx\\ &=-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (-\frac {7 a}{2}+a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}+\frac {\left (19 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}-\frac {\left (19 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {19 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2}}-\frac {9 \sin (c+d x)}{16 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.29, size = 168, normalized size = 1.07 \begin {gather*} -\frac {\sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \left (9 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+38 \sqrt {2} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+13 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \sin (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

-1/16*(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*(9*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 38*Sqrt[2]*ArcTan[
(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + 13*Sqrt[-((-1 + Sec[c
 + d*x])*Sec[c + d*x])])*Sin[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 200, normalized size = 1.27

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \left (19 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right )+13 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+19 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-4 \cos \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-9 \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right )}{16 d \sin \left (d x +c \right )^{5} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a^{3}}\) \(200\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/16/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)*(-1+cos(d*x+c))^2*(19*cos(d*x+c)*sin(d*x+c)*arctan
(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))+13*cos(d*x+c)^2*(-2/(1+cos(d*x+c)))^(1/2)+19*arctan(1/2*sin(d*x+c)*
(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-4*cos(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)-9*(-2/(1+cos(d*x+c)))^(1/2))/sin(
d*x+c)^5/(-2/(1+cos(d*x+c)))^(1/2)/a^3

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 3049 vs. \(2 (128) = 256\).
time = 0.99, size = 3049, normalized size = 19.42 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/32*(19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x
+ 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x +
 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x +
1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1
/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2
 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 1/
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2
*c) + 1))*sin(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 +
2*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c) + 114*(log(cos(1/2*d*x + 1/2*
c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c
)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
 1))*cos(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 26*sin(7/2*d*x + 7/2*c) -
10*sin(5/2*d*x + 5/2*c) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(4*d*x + 4*c) + 104*(2*sin(3*d
*x + 3*c) + 3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(7/2*d*x + 7/2*c) + 8*(114*(log(cos(1/2*d*x + 1/2*c)^2 + s
in(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*
sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(
1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos
(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 10*sin(5/2*d*x + 5/2*c) + 10*sin(3
/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(3*d*x + 3*c) + 40*(3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(5/2
*d*x + 5/2*c) + 12*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 19*log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(2*d*x
 + 2*c) + 8*(19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 26*sin(1/2*d*x + 1/2*c))*cos(d*x
+ c) + 4*(38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c) + 57*(log(cos(1/2*d*x
+ 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/
2*c) + 1))*sin(d*x + c) + 13*cos(7/2*d*x + 7/2*c) + 5*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*c) - 13*cos(1
/2*d*x + 1/2*c))*sin(4*d*x + 4*c) - 52*(4*cos(3*d*x + 3*c) + 6*cos(2*d*x + 2*c) + 4*cos(d*x + c) + 1)*sin(7/2*
d*x + 7/2*c) + 16*(57*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(
1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1...

________________________________________________________________________________________

Fricas [A]
time = 4.61, size = 408, normalized size = 2.60 \begin {gather*} \left [\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (13 \, \cos \left (d x + c\right ) + 9\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (13 \, \cos \left (d x + c\right ) + 9\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/64*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*
sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3
*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(13*cos(d*x + c) + 9)*s
qrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
, -1/32*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*sqrt((a*cos(d*x + c) + a)/cos
(d*x + c))*(13*cos(d*x + c) + 9)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)
^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6438 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^(5/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________